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Metacognition.

Awareness and understanding of
one’s own thought process.



Object and Meta-level reasoning (Nelson and Narens, 1994)
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Dual Process Theory:

Thinking Fast and Thinking Slow

System 1

System 1: fast,
rapidly interprets
sensor input

[

System 2

System 2: slow,
reaches
conclusions based
on inference

A 1975 study by
Wasson and Evans
popularized the
notion of dual
process theory in

psychology

Popularized by Nobel
Lauret Daniel
Kahneman’s 2011
book “Thlnklng Fast
and Thinking Slow”

But the theory was
criticized by what
separates the to
systems - different
studies identified
different correlates
for System 1 and
System 2
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Human Cognition: A Dual Process

An occasional "slow
thinking" is used when
we feel that the
autonomous processes
are incorrect

Humans have "fast
thinking" from a
collection of
autonomous processes

~<

Meta level

Object level

Type 2
Processing

Type 1
Processing

Reflective
Mind
(individual differences in rational thinking
dispositions)

A 4 ‘L \ J

Algorithmic
Mind
(individual differences
in fluid intelligence)

The reflective mind is
a metacognitive
process. It is
determining when
scarce working
memory should be
allocated for more

Autonomous
Mind
(few continuous individual differences)

computationally
intensive "Type 2"
tasks.

Figure from Evans and Stanovich 2013
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What initiates Metacognitive processes

Flavell (1979) proposed “automatic” and “deliberate”
metacognitive processes:

1. Automatic metacognition entails the emergence of
metacognitive “cues” -- heuristics that indicate provide
information about the quality of the cognitive action.

2. Deliberate metacognition serves various purposes with
principle activities include:

= Communication of cognitive state (Shea et al. 2014)
= Seeking help (Undorf, Livheh, and Ackerman 2021)

= Regulation of time investment (Ackerman 2013; Ackerman and Undorf
2017; Toplak et al., 2014)

Figure from Evans and Stanovich 2013
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Metacognitive Monitoring and Control

Humans use various
“metacognitve cues” to
self-assess reasoning
processes

Reasoning

Meta-Reasoning

Metacognitive

monitoring

Time
line Identify components Assessment of
and goal knowledge and memory? Change
r i strategy? Stop? —
Engage in solving?
Give up?
| Generate an initial, [
autonomous, response Provide the initial
response?
Analytic processing Reconsider?
|
Provide current
response? Try
another strategy?
1
] Answer choice Provide chosen
Y answer?

Seek help?

Figure from Ackerman and Thomson 2017

Metacognitive
control

Think? Search

Leibniz Lab

These cues allow
. for regulation of
cognitive resources
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Computational Criterion for
Metacognition



'oward Computational Instantiation:
'RAP: Criterion for Artificial Metacognition

TRAP (Transparency, Reasoning, Transparency
Adaptability, and Perception) form S

outputs and decisions

a criteria for an artificial
metacognitive (AM) system. . P—— [ J—

Allow Al to flexibly adapt Allow Al to interpret

its behavior and strategy sensory information on
the environment

Transparency
Adaptability

Metacognitive Al

M | Formal methods
Can the AM interpret perceptual

Explainable Al ]
information to improve results | Neurosymbolic A

Foundation models J

Uncertainty Quantification Human-Al Teaming J

Wei et al., 2024
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Mapping Computational Desiderata to
Cognitive Psychology Concepts

Design
considerations

Desired
capabilities

—

o

\l

Perception

— Metacognitive monitoring / automatic metacognition

— Developing metacognitive cues

— Easily computable, triggers other processes
Reasoning

— Metacognitive control / deliberate metacognition

— Correct initial outputs

— Regulate computational resources

Adaptability

- A cap ablllt%/ that arises out of metacognitive control / deliberate
io

metacogni
Transparency
— Communication of cognitive state

Syracuse University
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Techniques to Employ Metacognitive Monitoring

1. Detect an error state
—Train a model to detect if the model has an error

— Examples include ML introspection (Daftry et al., 2016), NASR
(Cornelio et al., 2022? and abductive learning with new
concepts (Huang et al., 2023)

2. Use an alternative model for the same task

— Use results of another model trained on the same task. The
results of those models act as metacognitive cues (e.qg.,
feature for an error detection model) (Lee et al., 2024)

— Recent work has looked at multiple models and does not
require a “lead model” (Leiva et al., 2026)

Shakarian, AAAI 2026
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Techniques to Employ Metacognitive Monitoring

3. Critique models

— Common technique with metacognition for LLM’s (Shinn et al.
2023; Xiong et al. 2025; Yang et al. 2025)

— Recent techniques such as Critic-V (Zhang et al. 2025) were trained
on degraded LLM reasoning paths

— Such approaches can also inform correction due to their natural-
language syntax

4. Consistency-based approaches
— Use a verifier to determine if the results are internally-consistent

— This has been demonstrated with human-created requirements
(Yang, Neary, and Topcu 2024)

— But has also been demonstrated with respect to logical rules learned
from training data (Krichelli et al., 2024)

Shakarian, AAAI 2026
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches

Syracuse University
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Error Detection Rules:
A strategy toward a metacognitive wrapper

Can we derive rules on when to disregard a machine
learning result and attempt to make a correction?

Example detection and

Simple example.
Assume multi-label
classification problem

where samples can have a

subset of labels

(automotive example).
{ ford, toyota, dodge, us, japan}

So, for a given sample,

we have a subset of
labels.

Jear (w) — {dodge, US}

correction rules and intuitions.

erToT (0! 10 (X) « predigyota (X) A cond,s(X)

Here we have a single condition cond, s, and we define it to
be true for sample x when us € f.,.(x). This is an example
of using a class label from a different level of the hierarchy,
as done in (Kricheli et al. 2024). Likewise, we can imagine
a detection rule:

corT goqge (X ) < condys(X) A predigy i (X)

Here, if the condition-class pair cond, s and toyota are true,
then the sample should be re-labeled as dodge.

Shakarian et al., AAAI-MAKE 2025.
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Probabilistic Interpretation

Probabilistic interpretation. Here we express key metrics as
conditional probabilities. Specifically, we are interested in precision
and recall change when metacognitive conditions are present.

Defining precision and Precision and recall when a
recall. condition is present.
Precision: P, = P(a € gt | a € f;) Precision:PS = P(a € gt | € fi,c ¢ M)

Recall: R, = P(a € f; | o € gt) Recall: R, = P(a € fi,c & M | a € gt)

Shakarian et al., AAAI-MAKE 2025.
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cessary and Sufficient Condition for Error Correction

Identifying conditions by
maximizing the following
product (support times
confidence) subject to the
below quantity leads to error

Plce M |ae€ f;) x
Pla¢gt|a€ fi,ce M)
Example results for precision

improvement for trajectory
classification (Xi et al., '25)

Characterization of Precision

Theorem 3.1 (Metacognitive Precision Change).

PC

x

—P,=Kx (Pla¢gt|ac fi,ce M)—(1-P.))

where I{ = ELcEM | a€fi)

>

>

P(cgM | acfi)
Validates empirical findings
Proven without independence assumptions

Gives rise to necessary and sufficient condition for

precision improvement: the probability of error given the

condition must be greater than the false discovery rate
Plad¢gt|ac fi,ce M) >1—P,

Provides for necessary and sufficient conditions for error

detecting conditions (Theorem 3.2 in the paper)

Shakarian et al., AAAI-MAKE 2025.
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Limits of Reclassification

ion

| Observat

Irica

Prior Em

We were able to obtain
significantly better F1

improvement in binary
classification tasks when
compared to multi-class when
label correction was included.

Single-class example (Lee et al.

94N\
& T) Magnesium yd N
Model Variant Precision Recall / Fl1
CNN (1) 0.52 0.65 0.58
RNN (4) 0.20 0.99 0.33
CNN (2) 0.86 0.17 0.28
CNN (1) (EDCR) | 0.53 (+3.19%) | 0.79 (+21.74%) | 0.64 (+10.67%)
RNN (4) (EDCR) | 0.20 (+0.87%) 1.00 (+l.43‘;3\ 0.33 (+0.96%)
CNN (2) (EDCR) 0.86 (0.0%) 0.17 (+0.0%) N\ 0.28 (0.0%) 4

Multi-class example (Xi et al. '25)

—————

0.60 1

0.58 1 —— Pre_base

0564 —= F1

>

0.00

Limits of Reclassification

Theorem 4.2 (Limits of Reclassification). If P(8 €
gt | € fi,ca € M) <P(BEgt]|pE f;)then

P(Begt|pefi)2PBegt|Be fiV(aeficacM)
Essentially, this is a formal argument for the following:

> A well-trained model assigns class /i, the most probable class
by training

» But the probability of i/ being correct is lower than the
average precision for predictions of class /.
» Which can be identified in error detection

» However, the next most probable class, j, is lower still, and
picking this would lower overall loss.

» This is because both the model and the conditions, those
samples cannot be re-assigned in a manner to improve
performance.

Shakarian et al., AAAI-MAKE 2025.
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches

Syracuse University

Leibniz Lab
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Training Sets

Problem Setup '

Multiple models

— Have error detection rules learned from
training data

— No information on how the models can
work together

Models are deployed (tested) in a
novel environment

Dust

Shown on the left are snapshots of
an aerial image dataset used to train
the models.

0.4 o4 04
0.2 02 0.2
0.0 -.-. oo . ..- 00
Rain  Srow Magle Oust  fog Ran  Snow Maple Dust  Fog R
Lest Leat

Figure from Leiva et al., AAAI 2026
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Test Environments

Test Sets

Unimodal Bimodal

os 08 o8| os o8| os [ os| os
os 08 08| os 06| o8 08 06| 06
04 o4
2 . .ll.l :;;IIII 02
. . 00 00 . - - .
Snow Maple  Dust R Snow Maple Oust  Fog R Smow t oy Ran  Snow Maple ODust Fog Raw  Snow Meple Oust  Fog
Leat Leat oat Loat Leat

Avg. Weather Intensity

1.0

0.8

0.6

o MM_1 oL MM _2 e MM_3 = AM_1 o ) AM_2 = HUM_1

on o8 o8 os 0.4

oe 08 os o

04 041 04 04 0.2

02 02 02 02

00 Ran snow Magle Oust Fog 00 Ran snow Magie Dust ! 00 an Snow Maple Dust  Fog oo Ran Snow Male !! 0.0 MDS-A 1 UM 2 BM 1 MM 1 AM 2 =
o e et [r iy

Figure from Leiva et al., AAAI 2026
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Approach
\

-

Novel Environment

Machine
Learning

Models
fi

~

»

Abduction Algorithm

*
4 ™

Metacognitive
Knowledge
about Model
Performance

*
~ B

Domain

Knowledge
17610171

- )

»

4 N

Class
assignment
abduced to
reduce error

and maintain

consistency
\ 9%

Figure from Leiva et al., AAAI 2026
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Abduction Problem

- accept(i,c) is an atom that is true if we
accept model f;'s classification of class ¢

- A set of atoms formed with predicate
accept is a hypothesis and denoted H

- We use the following rule to assign max Pred(H)
samples to a given class based on subject to:
accept and the error detection rules Inc(H) <4, 6€]0,1]
. . . and

assign(c,w) < —error(i,c,w)A\(fi(w) = ¢)Aaccept (i, ¢) (HUOUTI) \ Tgom is consistent

* Pred(H) is the number of assignments
that occur due to a given hypothesis

« Inc(H) is the number of inconsistencies
that occur due to a given hypothesis

Formalism from Leiva et al., AAAI 2026
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Algorithmic Approach

EXACT APPROACH:
INTEGER PROGRAM

max Z Z A,

weN ceC

Z Z Conw,(c,c’) < 57

w€e (¢,c’)eIC

subject to:

d A=l

ceC

Z Z Cong, (c.cry <0

W€ (¢,c")eIC

APPROXIMAT APPROACH:
HEURISTIC SEARCH

Algorithm 1: Heuristic Search (HS) for Prediction Optimization

1: Input:

2:  Praw (Set of all raw prediction tuples (o, [, f, ¢))

3: 4 (Maximum allowed inconsistency for Spa)

4:  Fgei (Set of EDR e thresholds to evaluate)

5: {Implicit: Sets F (models), C (classes); Functions

GetFilteredPreds(f, ¢, €, Puw) and Calclncon(S).}
Output: Sjn. (Optimized set of prediction tuples (o, 1))
Stinal +— 0
for each model f € F and class ¢ € C do

Phestags < 0 {Best predictions from current ( f, ¢) to add}
10: TNeurrentmax $— |Sﬁnai| {Max size of Sﬁml U me}
11:  foreach e € E,, do

bl e

12: P, < GetFilteredPreds(f, c, €, Pray)
13: Sccmd — Sﬁna[ U szw

14: if CalcIncon(Seuna) < 6 and | Scana| > Neurrentmax then
15: Pb(._,-f_add — Pmm.

16: Necurrent max $— |Sccmd‘

17: end if

18: end for

19: if Phrestadd # @ then

20: Stinat <= Spnat U Phest add

21: end if

22: end for

23: return S

Also, a
confidence-based
tie breaker
heuristic was
employed in both
approaches.

Formalism from Leiva et al., AAAI 2026

Syracuse University
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Algorithmic Approach

Best Avg. MV IP+TB HS+TB IP (No TB) HS (No TB)

Test Set Test Set ] ] ) ]

F1  Acc F1  Acc Fl Acc FI  Acc Fl Acc F1 (% Ditf) Acc (% Diff) F1 (% Ditf) Acc (% Diff)
MDS-A_1 0.57 040 | 052 036 | 028 034 | 0.58 041 0.58 041 MDS-A_l 0.58 (0.0) 0.41 (0.0) 0.52 (-10.3%)  0.35(-14.6%)
MDS-A_2 0.33 0.20 | 0.29 0.17 026 0.22 | 037 0.22 | 032 0.19 MDS-A_2 0.37 (0.0) 0.22 (0.0) 0.27 (-15.6%)  0.16 (-16.7%)
MDS-A_3 0.54 037 | 049 033 039 0.29 | 056 0.39 | 0.55 0.38 MDS-A3 0.56 (0.0) 0.39 (0.0) 0.49 (-10.9%)  0.32 (-15.8%)
UM_1 0.54 037 | 047 0.31 026 0.23 | 0.64 047 | 0.61 0.44 UM_1 0.64 (0.0) 0.47 (0.0) 0.53(-13.1%)  0.36 (-18.2%)
UM_2 0.56 038 | 046 0.31 025 022 | 0.64 047 | 061 044 UM_2 0.64 (0.0) 0.47 (0.0) 0.52(-14.1%)  0.35(-18.8%)
UM_3 054 037 | 043 028 | 022 0.19 | 0.63 046 | 0.59 042 UM_3 0.63 (0.0) 0.46 (0.0) 0.52(-11.9%)  0.35(-16.7%)
BML_I 042 0.27 | 033 020 | 0.19 0.16 | 045 0.29 | 0.39 0.24 BM_1 0.45 (0.0) 0.29 (0.0) 034 (-11.1%)  0.20 (-16.7%)
BM_2 0.33 0.20 | 0.25 0.15 0.14 0.12 | 0.37 0.23 | 036 0.22 BM_2 0.37 (0.0) 0.23 (0.0) 0.31 (-13.5%)  0.19(-13.6%)
BM_3 0.37 023 | 031 0.19 | 0.18 0.16 | 043 0.27 | 040 0.25 BM_3 0.43 (0.0) 0.27 (0.0) 0.34 (-15.0%)  0.20 (-20.0%)
MM_1 0.46 0.30 | 040 0.25 0.22 0.21 0.51 0.34 | 046 0.30 MM_1 0.51 (0.0) 0.34 (0.0) 0.38 (-15.7%)  0.24 (-20.0%)
MM_2 032 0.19 | 024 0.14 | 0.13 0.10 | 036 0.22 | 029 0.17 MM_2 0.36 (0.0) 0.22 (0.0) 0.25(-13.8%)  0.14 (-17.6%)
MM_3 041 026 | 035 022 | 0.18 0.16 | 046 030 | 039 0.24 MM_.3 0.46 (0.0) 0.30 (0.0) 0.33(-15.4%)  0.20 (-16.7%)
AM_1 0.18 0.10 | 0.12 0.07 0.05 004 | 0.21 0.11 | 0.18 0.10 AM_1 0.21 (0.0) 0.11 (0.0) 0.15(-16.7%)  0.08 (-20.0%)
AM_2 0.23 0.13 | 0.18 0.10 | 0.07 0.06 | 0.28 0.16 | 0.23 0.13 AM_2 0.28 (0.0) 0.16 (0.0) 0.19 (-17.4%)  0.11 (-15.4%)
HUM_.1 045 0.29 | 040 025 0.18 0.17 | 057 040 | 0.55 0.38 HUM.1 0.57 (0.0) 0.40 (0.0) 048 (-12.7%)  0.32(-15.8%)

Consistently the best performing approach.

Table from Leiva et al., AAAI 2026

Syracuse University
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches

Syracuse University
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Example Problems

Question: The second angle (A_2) of a triangle is
double the first (A_1). The third angle (A_3) is 40°
less than the first (A_1). Find the three angles.

Equations:
A2 =2"A1
A3=A_1-40

A1l+A2+ A3 =180
-

T

Question: Karl can clean a room in 4 hours. His
son Becky can clean it in 12 hours. How long
would it take if they clean it together?
Equations:

rate karl * 4 =1

rate_becky *12 =1

(rate_karl + rate_becky) * time_together =1

Question: Dad is 25 years elder than his 10 year-
old son. Mom is 3 years younger than Dad .
What age is Mom?

Equations:

age_son =10

age_dad - age_son = 25

age dad - age_mom =3

Question: The sum of three consecutive even
integers is 246. What are the integers?
Equations:

b=a+2

c=b+2

a+b+c=246

L

Question: Sally and Terry blended a coffee mix

If they used 40 mL of a coffee that costs $3.00,
how much of another coffee costing $1.50 did
they mix with the first?

Equations:
price_mix = 2.5
price_first = 3

price_another = 1.5

amount_first = 40

amount_mix = amount_first + amount_another
amount_mix * price_mix = amount_first *
price_first + amount_another + price_another

( Rate: speed, distance and time

Question: Terry leaves his house riding a bike at 20
km/h. Sally leaves 6 h later on a scooter to catch
up with him travelling at 80 km/h. How long will it
take her to catch up with him?

Equations:

speed_terry = 20

speed_sally = 80

time_shally = time_terry - 6

time_shally * speed_sally = time_terry *
speed_terry

that sells for $2.50 by mixing two types of coffee.

m A

Question: Doug and Becky sold 41 tickets for
an event. Tickets for children cost \$1.50 and
tickets for adults cost $2.00. Total receipts for
the event were $73.50. How many of each type
of ticket was sold?

Equations:

ticket_adults + ticket_children = 41
price_children = 1.5

price_adults = 2

price_children * ticket_children + price_adults *
ticket_adults = 73.5

Figures from Yang et al., AAAI-FS 2025

Syracuse University
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EDCIM: Rule Learning

Algorithm 1: DetRuleLearn (Xi et al. 2023)

Input: Recall reduction threshold &, Condition set C'
Output: Subset of conditions C’
C":=10

« Input includes candidate

C*:={ceCst NEG(y <e-N} conditions
while C* # () do
Chest = argmaxcec+ POScr ey « Algorithm finds conditions

Add cpest to DC;

C*:i={ceC\ st NEGgygey <e-N}
end while
return C’

that lead to error correction

Train/Test Split ACC Gain

0.1/0.9 0.115
0.2/0.8 0.111
0.3/0.7 0.111
0.4/0.6 0.109
0.5/0.5 0.106
0.6/0.4 0.108
0.7/0.3 0.104
0.8/0.2 0.104
0.9/0.1 0.104

Figures from Yang et al., AAAI-FS 2025
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Example Critic Model: EDCIM (Yang et al., 2025)

Problem: convert a
math word problem
into formal equations
via LLM

o

Please extract the equations from the given
question.

Provide the equations only.

{fewshot examples}

Question: olivia had 32 stamps and sally 154
stamps . Each bought same number of stamps
now sally has 3 times as many stamps as olivia .
How many stamps did they buy in all?

Equations: )

N

Model Output ™

initial_stamps_olivia = 32

initial_stamps_sally = 154
new_stamps_olivia = x

new_stamps_sally = x

new_stamps_sally = 3 * new_stamps_olivia
new_stamps_olivia + X = initial_stamps_olivia
new_stamps_sally + x = initial_stamps_sally

X + X = new_stamps_sally - new_stamps_olivia

J

L N NN,

Metacognitive
cues suggest
possible errors

-

.

Number of addition and
subtraction symbols e [4,5]
Number of multiplication and
division symbols € [1,2]
Number of equations  [8,9]

.
.
.
.
.

.
.

Majority distance of equation -

answers  [1.0,1.1]

Shannon entropy of equation
answers e [0.0,0.1]

Gini impurity of equation
answers « [0.0,0.1]

Equation tree depth e [3,4]

Error reported

by EDR

o
.
.

Metacognitive control
uses the cues to call a
more powerful LLM to
improve performance

Model Input \

Please extract the equations from the given question.

Provide the equations only.

{fewshot examples}

Question: olivia had 32 stamps and sally 154 stamps . Each
bought same number of stamps now sally has 3 times as many
stamps as olivia . how many stamps did they buy in all ?
Equations:

rrectly for the following

Please extract the eiuations ﬁain for the iiven question.

Corrected Equations:

.
Model Output

olivia_initial = 32

sally_initial = 154

olivia_final = olivia_initial + stamps_bought
sally_final = sally_initial + stamps_bought

\ sally_final = 3 * olivia_final

"
I T I O O O Casssssssnne sevssens erserrssnnnae tessenns srrann sene

R N R R R R D I I
. .

Model Input ™

stamps_bought = 29

Figures from Yang et al., AAAI-FS 2025
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From Metacognitive Rules to Corrective Suggestions

This, in turn, allows us to trade-off
performance for queries o a more powerful
model.

0.200

Critic (DeepSeek corrector)

(0. 175 Freeeovnscnanannnsnonnssnsnsssasnssasnassossansassnnssssnssnssnsepomm s

Critic (GPT-40 corrector)

cotcotnotnotlonlonntnnttnttnttntonlonltnlinlinlintinﬂ#&ntoot aEw

-

0.150 - -
0.125 -
0.100 -

0.075 -

Critic (Phi3 corrector)

N

0.025 4 == EDCIM with GPT4o corrector

=== EDCIM with DeepSeek corrector

0.000 +—— T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Cloud-based Reprompt Rate

Accuracy gain over baseline local model

Type Triggered Conditions Correction Suggestions

Low  The system may be under-specified with too few equations Add more equations to fully describe the problem

High The system contains too many equations Reduce the number of equations in the system

Low  Too few variables may miss important aspects Consider introducing additional variables if needed

High Too many variables were used Use fewer variables to simplify the equations

Low  Very few constants might miss numeric details Include more relevant numerical values

High Too many constants were used Use fewer numeric constants

Low  Lack of addition operations might indicate under-formed expressions ~ Use addition operations where needed to complete relationships
High Too many addition operations were used Simplify the equations by reducing additions

Low  Too few multiplications might under-represent relationships Include multiplication to model proportional or product-based relations
High Too many multiplication operations were used Reduce the number of components in each equation

Low  Shallow equation depth might miss logical structure Use more structured nesting to reflect problem hierarchy
High Equations are deeply nested Simplify by reducing nesting in expressions

Low  Equations are overly simple Add more structure to better represent the problem

High Equations are structurally complex with many elements Reduce the number of components in each equation

Low  Too few leaf nodes may indicate underdeveloped equations Use more complete expressions with relevant terms

High Too many terminal nodes in expression trees Reduce terminal terms for clarity

Low  The responses are overly uniform Encourage more variation to explore diverse interpretations
High The responses are highly diverse Focus on extracting more consistent equations

Low  Very low variation detected Consider encouraging alternative formulations

High  There is significant variation among responses Promote more consistent equation structures

Low  Strong consensus detected Still, double-check for correctness Still, double-check for correctness despite agreement

High The majority answer is not clearly supported Refine equations to better align with consensus

Figures from Yang et al., AAAI-FS 2025

Syracuse University
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Ablations

DRAW-1k GSM-8k
Answer Error # calls per sample # calls per sample
Method Generator Corrector ACC  local cloud ACC  local cloud
LLMonly GPT4o - 91.6 - 1 84.4 - 1
LLM only DeepSeek - 92.4 - 1 80.2 - 1
LLM only Phi3 - 75.2 1 - 52.2 1 -
SC Phi3 - 78.8 10 - 60.4 10 -
SC+Solv.  Phi3 - 81.9 10 - 61.7 10 -
Phi3 Phi3 79.2 2 - 64 2 -
CRITIC Phi3 GPT4o0 91.4 1 1 83.8 | 1
Phi3 DeepSeek  92.7 1 1 84.6 1 1
Phi3 Phi3 78.8  10.36 - 66.2 10.43 -
EDCIM Phi3 GPT4o0 85.7 10 0.36 74.4 10 0.43

Phi3 DeepSeek  87.8 10 0.36 75.0 10 0.43

Figures from Yang et al., AAAI-FS 2025
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches

Syracuse University
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Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification
Kricheli et al., 2024 (CIKM)

Framework

L ogical

Key idea: learn rules to identify
conditions when an image
classifier would produce an
erroneous classification.

\/ cond(X).

condeDC,

errory(X) < assigny(X) A

If sample X is assigned class y
and one of several conditions in
set DC, is true for sample X, then
the model produced an error.

In hierarchical multi-class
problem, we can use the
complementary class as a
condition.

This can also allow us to recover
constraints between classes.

Detection

Combinatorial algorithm allows for
the learning of the set of a
conditions for each class by
maximizing the F1 of the error.

Algorithm 1 RatioDetRuleLearn

Require: Class y € Y, of a granularity g and its per-granularity
condition set Cy
Ensure: Non-empty subset of conditions () C ﬁcy C Cg
DC% —0,Cy —Cyi 0
while Cy, # 0 do
BOD

T -BOD”
DC{Ju{c} DC“y
ceCy posT
DC;’u{c}

DC! « DCE U {cpest}
Cy — {c € Cy |POST

Chest € Argmin, ~FoST
jalel

-
> POSDC?,}

DCiFUfc}
je—i+1
end while
BOD” . +FPT
N DC U
i € argmin; J

pos” .
D’Cy
return DCy — DC;,

Accurate Detection (Vision)

Dataset Method Balanced Error f1
Error Acc.

- Binary NN 80.10% 80.18%
Military DetRuleLearn [32]  83.45% 82.62%
Vehicles f-EDR (ours) 84.08% 83.17%

Binary NN 72.85% 68.96%

ImageNet50 DetRuleLearn [32] 80.92% 72.78%
f-EDR (ours) 84.26% 77.78%

Binary NN 64.80% 63.65%

Openlmage36  DetRuleLearn [32] 59.87% 46.46%
f-EDR (ours) 66.63% 65.83%

on

Correcti

Error detection rules reliably recover
relationships among classes
(Openlmage results shown).

100
901 TTT==ao
80f T Tme——m—a
[
60 ........................................... i‘::l'—.'.';'_-
50
40
301 —— Balanced Error Accuracy
201 = Error F1-Score
10{ --- Constraints F1-Score
% 000 01 02 03 04 05

Noise ratio

We could use this error information
to retrain the model and improve
performance.

Dataset Method Fine-Grain ~ Coarse-  Inconsistency
Acc.  Grain Acc.

— VITh 16 ST68%  0.15%  3.00% (362/12002)

PN (EDR+LTN(ous)  60.01%  9121%  173% (208/12002)
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Avenues for Inquiry and
Closing Comments



Areas for Further Ignuiry

Metacognitive Control

— Can we regulate the use of computational resources in a non
ad-hoc manner?

— Becoming increasingly important with massive requirements
for power and compute

— Techniques like EDCIM (Yang et al., 2025) have shown this is
possible, but it is mainly a side-effect of correction as opposed
to reasoning about available compute
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Areas for Further Ignuiry

Artificial Metacognition to

Mimic Human Metacognitive
Processes

— Recently proposed extension to the
common model of cognition (Laird
et al., 2025)

— Proposed extensions for ACT-R have
also been recently proposed
(Lebiere et al., 2025)

— Hyperdimensional computing, a
brain-inspired paradigm has also
been shown to provide evidence of
metacognitive abilities.

Hyperdimensional vector "gluing” was shown to

be able to combine hypervectors based on
metacognitive error information.

g

/

a=0.76
76% Correct

| Model A
24% Wrong

b=(1-a) x 0.70 =0.168 | | Model B
70% Correct 30% Wrong

Model A Model B
a=0.87 | Model A
87% Correct 13% Wrong
“\\ (REPEAT INDEFINITELY)
N 4

—

Figure from Sutor et al., IJCNN 2022.
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reas for Further Ignuiry

eed for Datasets/Benchmarks

— Benchmarks for Artifical Metacognition
are nascent

= Benchmark: Multiple Distribution
Shift — Aerial (MDS-A) (Ngu et al.
2025)

= Toolkit for building benchmarks:
Natural Robustness Toolkit (NRTK)
(Kitware 2025)

— Evaluation is also a challenge (Lanus
and Freeman 2025)

KitWare's NRTK can lay the potential
groundwork for improved evaluation of
artificial metacognition.

O README A% Contributing &8 Apache-2.0 license z

Z NRTK

Natural Robustness Toolkit

Natural Robustness Toolkit (NRTK)

The Natural Rebustness Toolkit (NRTK) is an open source toclkit for generating operationally realistic
perturbations to evaluate the natural robustness of computer vision algorithms.

The nrtk package evaluates the natural robustness of computer vision algorithms to various perturbations, including
sensor-specific changes to camera focal length, aperture diameter, etc.

We have also created nrtk.interop.maite module to support Al T&E use cases and workflows, through
interoperability with MAITE and integration with other JATIC tools. Users seeking to use NRTK to perturb MAITE-
wrapped datasets or evaluate MAITE-wrapped models should utilize this module. Explore our T&E guides which
demonstrate how nrtk perturbations and maite can be applied to assess operational risks,

Why NRTK?

NRTK addresses the critical gap in evaluating computer vision model resilience to real-world operational conditions
beyond what traditional image augmentation libraries cover. T&E engineers need precise methods to assess how
models respond to sensor-specific variables (focal length, aperture diameter, pixel pitch) and environmental factors
without the prohibitive costs of exhaustive data collection. NRTK leverages pyBSM's physics-based models to
rigorously simulate how imaging senscrs capture and process light, enabling systematic robustness testing across
parameter sweeps, identification of performance boundaries, and visualization of model degradation. This capability
is particularly valuable for satellite and aerial imaging applications, where engineers can simulate hypothetical sensor
configurations to support cost-performance trade-off analysis during system design—ensuring Al models maintain
reliability when deployed on actual hardware facing natural perturbations in the field.

Syracuse University
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Past Metacognition Workshops

METACOG-23, Nov. 2023 @ Scottsdale, AZ
ARO-Sponsored

25 interdisciplinary participants representing
16 universities and companies

METACOG-23 (Nov. 2023)

This event was sponsored by the Army Research Office held on Nov. 13-15, 2023 in Scottsdale, AZ.

As artificial intelligence become more prevalent in military systems, improved characterization of such systems will, in-turn, become important to ensure that such
systems are safe and reliable in supporting the warfighter. However, while Al systems, often using supervised machine learning or reinforcement learning, have provided
excellent results for a variety of applications, the reasons behind their failure modes or anomalous behavior are generally not well understood. The idea of metacognition
reasoning about an Al system itself, is a key avenue to understanding the behavior and performance of machine learning systems. Recently, a variety of methodologies
have been explored in the literature, which including stress testing of robotic systems [1], model introspection [2], model certification [3], and performance prediction [4].
Moreover, researchers across multiple disciplines including computer science, control theory, mechanical engineering, human factors, and business schools have
explored these problems from different angles. The objectives of the workshop are as follows

« Create a taxonomy of various approaches to metacognition of Al systems

« Understand the requirements for various metacognitive approaches

+ Summarize recent results obtained in the study of Al metacognition

« Enumerate current applications for which Al metacognitive techniques have been applied
+ Understand the relationship between Al metacognition and human operators

Specific topics to be covered include, but are not limited to:

« Explainable performance prediction of black-box Al systems

«» Stress testing of reinforcement learning systems

+ How can metacognition be used to increase trust in Al systems by the operator
« Applications of Al metacognition to robotic and vision systems

Christian Lebiere Carnegie Mellon University An architectural approach to metacognition

Sergei Nirenburg Rensselaer Polytechnic Institute Mutual Trust in Human-Al Teams Relies on Metacognition

Hua Wei Arizona State University Trustworthy Decision Making in the Real World through Uncertainty Reasoning
Ufuk Topcu University of Texas Multi-Modal, Pre-Trained Models in Verifiabl Decision-Making
Visar Berisha Arizona State University A Theoretically-Grounded Framework for Assured ML in High-Stakes Domains

Bridging Symbolic and Numeric Paradigms: Unified Neuro-symbolic Models for Mathematical

ChandaRtoddy I DU Understanding and Generation

Paulo Shakarian Arizona State University Metacognitive Al through Error Detection and Correction Rules

METACOG-25, May 2025 @ Alexandria, VA (SDM)

SSCI-Sponsored,
18 interdisciplinary participants representing
15 universities and companies

Home / METACOG-25

METACOG-25 Archives

= July 2025
The Second Workshop on Metacognitive Prediction of Al Behavior

Second Workshop on Metacognitive Prediction of Al Behavior Categories

= Uncategorized

Held at SDM-2025: https://www.siam.org/conferences-events/siam-
conferences/sdm25/

Video release form: https://neurosymbolic.asu.edu/wp-

content/uploads/sites/28/2025/03/Video-Consent-and-Release-Form.pdf

Date: May 1, 2025 10:00am-3:30pm

Location: Alexandria, VA (The Westin Alexandria Old Town Hotel, room Edison
©)

Part of SIAM Data Mining 2025 (SDM-25) (SDM occurs May 1-3,2025 - full
schedule here

Thanks to our sponsor, SSCI for their support of this event.

Main Keynote: Andrea Stocco
What is “meta” in metacognition? Insights from brain’s cognitive
architecture

Andrea Stocco is a computational cognitive neuroscientist from Friuli, Italy. Dr.
Stocco earned his Ph.D. from the University of Trieste and completed
postdoctoral work at Carnegie Mellon University. He is now an associate

[T SRS » SR Ny SR [ . AR I R SRR
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Metacognition Resources

Resource page: Edited volume by Cambridge
https://metacognition.syracuse.edu University Press

S Syracuse University | Metacognition Searchtlie M etaCOgn Itlve\

Metacognition Updates Workshops~ Books and Journals ~ ﬁn{tAerﬁ:gglr?cl:e—

EDITED BY
Paulo Shakarian and Hua Wei

Metacognition Projects ~

N

Metacognition
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Paulo Shakarian

K.G. Tan Endowed Professor of Al
Director, Leibniz Lab

Leibniz pashakar@syr.edu
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