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Metacognition:

Awareness and understanding of  
one’s own thought process.
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Object and Meta-level reasoning (Nelson and Narens, 1994)

Object-Level processes include tasks 
such as perception, learning, reasoning, 
and planning 

Object

Meta
Meta-Level processes monitor and assess 
the object-level processes
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Dual Process Theory:
Thinking Fast and Thinking Slow

System 1: fast, 
rapidly interprets 
sensor input

System 2: slow, 
reaches 
conclusions based 
on inference

System 1 System 2

• A 1975 study by 
Wasson and Evans 
popularized the 
notion of dual 
process theory in 
psychology

• Popularized by Nobel 
Lauret Daniel 
Kahneman’s 2011 
book “Thinking Fast 
and Thinking Slow”

• But the theory was 
criticized by what 
separates the to 
systems – different 
studies identified 
different correlates 
for System 1 and 
System 2
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Human Cognition: A Dual Process

Figure from Evans and Stanovich 2013

Humans have “fast 
thinking” from a 
collection of 
autonomous processes

An occasional “slow 
thinking” is used when 
we feel that the 
autonomous processes 
are incorrect

The reflective mind is 
a metacognitive 
process.  It is 
determining when 
scarce working 
memory should be 
allocated for more 
computationally 
intensive “Type 2” 
tasks.

Meta level
Object level
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What initiates Metacognitive processes

Figure from Evans and Stanovich 2013

Flavell (1979) proposed “automatic” and “deliberate” 
metacognitive processes:

1. Automatic metacognition entails the emergence of 
metacognitive “cues” -- heuristics that indicate provide 
information about the quality of the cognitive action.

2. Deliberate metacognition serves various purposes with 
principle activities include:

▪ Communication of cognitive state (Shea et al. 2014)

▪ Seeking help (Undorf, Livneh, and Ackerman 2021)

▪ Regulation of time investment (Ackerman 2013; Ackerman and Undorf 
2017; Toplak et al., 2014)
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Metacognitive Monitoring and Control

Figure from Ackerman and Thomson 2017

Humans use various 
“metacognitve cues” to 
self-assess reasoning 
processes

These cues allow 
for regulation of 
cognitive resources



Computational Criterion for 
Metacognition



Syracuse University                                                                                                          Leibniz Lab 9

Toward Computational Instantiation:
TRAP: Criterion for Artificial Metacognition

TRAP (Transparency, Reasoning, 
Adaptability, and Perception) form 
a criteria for an artificial 
metacognitive (AM) system.

Transparency
Can the system communicate it 
cognitive state and/or why it believes 
there is a potential lerror.

Adaptability
Can the AM system easily adapt to 
novel environments
Reasoning
Can the AM system reason about the 
metacognitive trigger to make a 
correction or alert the user

Perception
Can the AM interpret perceptual 
information to improve results

Wei et al., 2024
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Mapping Computational Desiderata to 
Cognitive Psychology Concepts

• Perception

– Metacognitive monitoring / automatic metacognition

– Developing metacognitive cues

– Easily computable, triggers other processes

• Reasoning

– Metacognitive control / deliberate metacognition

– Correct initial outputs

– Regulate computational resources

• Adaptability

– A capability that arises out of metacognitive control / deliberate 
metacognition

• Transparency

– Communication of cognitive state

Design 
considerations

Desired 
capabilities
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Techniques to Employ Metacognitive Monitoring

1. Detect an error state

– Train a model to detect if the model has an error

– Examples include ML introspection (Daftry et al., 2016), NASR 
(Cornelio et al., 2022), and abductive learning with new 
concepts (Huang et al., 2023)

2. Use an alternative model for the same task

– Use results of another model trained on the same task.  The 
results of those models act as metacognitive cues (e.g., 
feature for an error detection model) (Lee et al., 2024)

– Recent work has looked at multiple models and does not 
require a “lead model” (Leiva et al., 2026)

Shakarian, AAAI 2026
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Techniques to Employ Metacognitive Monitoring

3. Critique models
– Common technique with metacognition for LLM’s (Shinn et al. 

2023; Xiong et al. 2025; Yang et al. 2025)

– Recent techniques such as Critic-V (Zhang et al. 2025) were trained 
on degraded LLM reasoning paths

– Such approaches can also inform correction due to their natural-
language syntax

4. Consistency-based approaches
– Use a verifier to determine if the results are internally-consistent

– This has been demonstrated with human-created requirements 
(Yang, Neary, and Topcu 2024)

– But has also been demonstrated with respect to logical rules learned 
from training data (Krichelli et al., 2024)

Shakarian, AAAI 2026
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches
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Error Detection Rules:
A strategy toward a metacognitive wrapper

Can we derive rules on when to disregard a machine 
learning result and attempt to make a correction?

Example detection and 
correction rules and intuitions.

Simple example. 
Assume multi-label 
classification problem 
where samples can have a 
subset of labels 
(automotive example).

So, for a given sample, 
we have a subset of 
labels.

Shakarian et al., AAAI-MAKE 2025.
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Probabilistic Interpretation

Probabilistic interpretation.  Here we express key metrics as 
conditional probabilities.  Specifically, we are interested in precision 
and recall change when metacognitive conditions are present.

Defining precision and 
recall.

Precision and recall when a 
condition is present.

Shakarian et al., AAAI-MAKE 2025.
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Necessary and Sufficient Condition for Error Correction

Identifying conditions by 
maximizing the following 
product (support times 
confidence) subject to the 
below quantity leads to error 
detecting rules.

P
r
io

r
 E

m
p

ir
ic

a
l 

O
b

s
e
r
v
a
ti

o
n

Example results for precision 
improvement for trajectory 
classification (Xi et al., ‘25)

Characterization of Precision 
Change

➢ Validates empirical findings

➢ Proven without independence assumptions

➢ Gives rise to necessary and sufficient condition for 
precision improvement: the probability of error given the 
condition must be greater than the false discovery rate

➢ Provides for necessary and sufficient conditions for error 
detecting conditions (Theorem 3.2 in the paper)

Shakarian et al., AAAI-MAKE 2025.
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Limits of Reclassification

Shakarian et al., AAAI-MAKE 2025.

We were able to obtain 
significantly better F1 
improvement in binary 
classification tasks when 
compared to multi-class when 
label correction was included.
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Single-class example (Lee et al. 
‘24)

Limits of Reclassification

Essentially, this is a formal argument for the following:

➢ A well-trained model assigns class i, the most probable class 
by training

➢ But the probability of i being correct is lower than the 
average precision for predictions of class i.
➢ Which can be identified in error detection

➢ However, the next most probable class, j, is lower still, and 
picking this would lower overall loss.

➢ This is because both the model and the conditions, those 
samples cannot be re-assigned in a manner to improve 
performance.

Multi-class example (Xi et al. ‘25)
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches
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Problem Setup

Multiple models

– Have error detection rules learned from 
training data

– No information on how the models can 
work together

Models are deployed (tested) in a 
novel environment

Shown on the left are snapshots of 
an aerial image dataset used to train 
the models.

Figure from Leiva et al., AAAI 2026
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Test Environments

Figure from Leiva et al., AAAI 2026
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Approach

Novel Environment Machine 
Learning 
Models

f1

.

.

.

fi
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.

.

f

Metacognitive 
Knowledge 

about Model 
Performance

1,...,i ,...,

Domain 
Knowledge

dom

Abduction Algorithm

Class 
assignment 
abduced to 

reduce error 
and maintain 
consistency

Figure from Leiva et al., AAAI 2026
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Abduction Problem

• accept(i,c) is an atom that is true if we 
accept model fi’s classification of class c

• A set of atoms formed with predicate 
accept is a hypothesis and denoted H

• We use the following rule to assign 
samples to  a given class based on 
accept and the error detection rules 

• Pred(H) is the number of assignments 
that occur due to a given hypothesis

• Inc(H) is the number of inconsistencies 
that occur due to a given hypothesis

Formalism from Leiva et al., AAAI 2026
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Algorithmic Approach

EXACT APPROACH:
INTEGER PROGRAM

APPROXIMAT APPROACH:
HEURISTIC SEARCH

Formalism from Leiva et al., AAAI 2026

Also, a 
confidence-based 
tie breaker 
heuristic was 
employed in both 
approaches.
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Algorithmic Approach

Table from Leiva et al., AAAI 2026
Consistently the best performing approach.
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Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches
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Example Problems

Figures from Yang et al., AAAI-FS 2025
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EDCIM: Rule Learning

• Input includes candidate 
conditions

• Algorithm finds conditions 
that lead to error correction

Figures from Yang et al., AAAI-FS 2025
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Example Critic Model: EDCIM (Yang et al., 2025)

Problem: convert a 
math word problem 
into formal equations 
via LLM

Metacognitive 
cues suggest 
possible errors

Metacognitive control 
uses the cues to call a 
more powerful LLM to 
improve performance

Figures from Yang et al., AAAI-FS 2025
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From Metacognitive Rules to Corrective Suggestions

This, in turn, allows us to trade-off 
performance for queries to a more powerful 
model.

Figures from Yang et al., AAAI-FS 2025
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Ablations

Figures from Yang et al., AAAI-FS 2025



Syracuse University                                                                                                          Leibniz Lab 33

Example Metacognitive Architecutres

1. Detect an error state

2. Use an alternative model for the same task

3. Critique models

4. Consistency-based approaches
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Key idea: learn rules to identify 
conditions when an image 
classifier would produce an 
erroneous classification.

Combinatorial algorithm allows for 
the learning of the set of a 
conditions for each class by 
maximizing the F1 of the error.

Accurate Detection (Vision)

Error detection rules reliably recover 
relationships among classes 
(OpenImage results shown).

We could use this error information 
to retrain the model and improve 
performance.
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If sample X is assigned class y 
and one of several conditions in 
set DCy is true for sample X, then 
the model produced an error.

In hierarchical multi-class 
problem, we can use the 
complementary class as a 
condition.

This can also allow us to recover 
constraints between classes.

Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification
Kricheli et al., 2024 (CIKM)



Avenues for Inquiry and 
Closing Comments
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Areas for Further Iqnuiry

Metacognitive Control

– Can we regulate the use of computational resources in a non 
ad-hoc manner?

– Becoming increasingly important with massive requirements 
for power and compute

– Techniques like EDCIM (Yang et al., 2025) have shown this is 
possible, but it is mainly a side-effect of correction as opposed 
to reasoning about available compute
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Areas for Further Iqnuiry

Artificial Metacognition to 
Mimic Human Metacognitive 
Processes

– Recently proposed extension to the 
common model of cognition (Laird 
et al., 2025)

– Proposed extensions for ACT-R have 
also been recently proposed 
(Lebiere et al., 2025)

– Hyperdimensional computing, a 
brain-inspired paradigm has also 
been shown to provide evidence of 
metacognitive abilities.

Figure from Sutor et al., IJCNN 2022.

Hyperdimensional vector “gluing” was shown to 
be able to combine hypervectors based on 
metacognitive error information.
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Areas for Further Iqnuiry

Need for Datasets/Benchmarks

– Benchmarks for Artifical Metacognition 
are nascent

▪ Benchmark: Multiple Distribution 
Shift – Aerial (MDS-A) (Ngu et al. 
2025)

▪ Toolkit for building benchmarks: 
Natural Robustness Toolkit (NRTK) 
(Kitware 2025)

– Evaluation is also a challenge (Lanus 
and Freeman 2025)

KitWare’s NRTK can lay the potential 
groundwork for improved evaluation of 
artificial metacognition.
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Past Metacognition Workshops

METACOG-23, Nov. 2023 @ Scottsdale, AZ
ARO-Sponsored
25 interdisciplinary participants representing 
16 universities and companies

METACOG-25, May 2025 @ Alexandria, VA (SDM)
SSCI-Sponsored, 
18 interdisciplinary participants representing 
15 universities and companies
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Metacognition Resources

Resource page:
https://metacognition.syracuse.edu

Edited volume by Cambridge 
University Press



Learn more  

Paulo Shakarian
K.G. Tan Endowed Professor of AI
Director, Leibniz Lab

pashakar@syr.edu
https://leibniz.syracuse.edu
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